Formulation and implementation of a ‘‘residual-mean’’ ocean circulation model

نویسندگان

  • D. Ferreira
  • J. Marshall
چکیده

A parameterization of mesoscale eddies in coarse-resolution ocean general circulation models (GCM) is formulated and implemented using a residual-mean formalism. In that framework, mean buoyancy is advected by the residual velocity (the sum of the Eulerian and eddy-induced velocities) and modified by a residual flux which accounts for the diabatic effects of mesoscale eddies. The residual velocity is obtained by stepping forward a residual-mean momentum equation in which eddy stresses appear as forcing terms. Study of the spatial distribution of eddy stresses, derived by using them as control parameters to ‘‘fit’’ the residual-mean model to observations, supports the idea that eddy stresses can be likened to a vertical down-gradient flux of momentum with a coefficient which is constant in the vertical. The residual eddy flux is set to zero in the ocean interior, where mesoscale eddies are assumed to be quasi-adiabatic, but is parameterized by a horizontal down-gradient diffusivity near the surface where eddies develop a diabatic component as they stir properties horizontally across steep isopycnals. The residual-mean model is implemented and tested in the MIT general circulation model. It is shown that the resulting model (1) has a climatology that is superior to that obtained using the Gent and McWilliams parameterization scheme with a spatially uniform diffusivity and (2) allows one to significantly reduce the (spurious) horizontal viscosity used in coarseresolution GCMs. 2005 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Modeling of Wind-Driven Circulation In The Northern Indian Ocean During Monsoon

Abstract The purpose of this research is to design and identify some of the natures and characteristics of high-resolution surface currents in the Northern Indian Ocean. The pattern of 3D circulation of the Wind-driven surface currents, Sea surface temperature (SST) and Sea Surface Salinity (SSS) distribution in the Northern Indian Ocean using The MIT general circulation model (MITgcm) with ho...

متن کامل

Estimating Eddy Stresses by Fitting Dynamics to Observations Using a Residual-Mean Ocean Circulation Model and Its Adjoint

A global ocean circulation model is formulated in terms of the “residual mean” and used to study eddy–mean flow interaction. Adjoint techniques are used to compute the three-dimensional eddy stress field that minimizes the departure of the coarse-resolution model from climatological observations of temperature. The resulting 3D maps of eddy stress and residual-mean circulation yield a wealth of...

متن کامل

Evaluating the performance of Atmosphere-Ocean Global Circulation Models (AOGCM) in simulating temperature variable in Ahwaz and Abadan stations

Climate changes caused by global warming has presented challenges to human society. Studying the Changes of climate variables in the future decades by using output data’s of Atmosphere-Ocean Global Circulation Models (AOGCM) is a way of perusing climate fluctuation in a region. In this study, the focus is on the AOGCM proceeds in simulating of variable temperature in Ahwaz and Abadan stations. ...

متن کامل

A Mathematical Model for Indian Ocean Circulation in Spherical Coordinate

In recent years, the Indian Ocean (IO) has been discovered to have a much larger impact on climate variability than previously thought. This paper reviews processes in which the IO is, or appears to be, actively involved. We begin the mathematical model with a pattern for summer monsoon winds. Three dimensional temperature and velocity fields are calculated analytically for the ocean forced by ...

متن کامل

Ocean Circulation on the Intel Paragon: Modeling and Implemerntation

In this paper, we present the modeling and implementation of a grand-challenge problem in the jield oj scientific computation: the Primitive-Equation Numerical Ocean Circulation Model. We present the mathematical formulation of the model and propose a scheme for its parallel implementation. Optimization8 are made through collective communications and various partitioning schemes. In our experim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006